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FINITE-AMPLITUDE WAVES IN A STRATIFIED JET STREAM

AND- CLEAR A-IR TURBULENGE

Z. N. Kogan and N. P. Shakina

/ 333*

Based on present concepts [1, 2], the instability of wave

perturbations, their amplitude increase, and disintegration are

the basic mechanism forming the zones of intense turbulence in

a free atmosphere. Recently the linear problem of the stability

of streams which are continuously stratified in terms of wind

and temperature has been intensively studied [3-6]. It has been

established that at Ri numbers which are smaller than 1/4,_the

perturbations of infinitely small amplitude lose stability in

a very wide range of wavelengths; this range of wavelengths

contracts as the minimum Ri number increases in the stream.

Laboratory experiments [7] have shown that at the beginning

stage of the perturbation increase (i.e., at fairly.shall

amplitudes) the linear theory closely describes the development

of instability. A theoretical study of a further increase in

unstable waves requires an examination of perturbations of finite

amplitude., One of the fruitful approaches to a solution of non-

linear problems of stability is based on the concept of

L. D Landau [8], which represents the characteristics of perturbed

motion in the form of amplitude power series. The terms of first

order in these series correspond to the linear theory, whose

Fhigherj terms give nonlinear corrections. In combination with

the so-called "two time method", the amplitude power expansion

method was used in [9] to analyze the stability of the flow of a

* Numbers in margin indicate pagination in original foreign text.
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viscous homogeneous liquid (Poiseuille and Couette-Poiseuille

flow). The procedure developed in [9] was used in the study

for the case of a stratified medium to investigate "super-

critical" (corresponding to Ri numbers which are less than the

critical value of 1/4) behavior of waves which are unstable

according to linear theory, and also internal gravitational

shear neutrailwaves of finite amplitude for all Ri>O' We shall

briefly discuss a method to solve this problem.

Let us assume the x axis is directed along the flow (along

the axis of the plane-parallel stream), z- is directed upward

(all the variables are dimensionless). We shall solve the non-

linear system of equations consisting of the equations of motion,

heat flux, and continuity in the Boussinesq approximation under

conditions (which are normal for nonviscous problems of hydro-

dynamic stability) when there is no flow on the layer boundaries.
.. / 3 3 4

We should recall that in linear theory perturbations are

usually represented in the form of elementary waves of the form

where s' is a fluctuation of any of the values; s- the corres-

ponding amplitude function; a and - wave numbers along the

x and y axes; t- time; c - complex frequency. The

exponential factor A-eip(-9)jin the case:'4I<Ob describes-the

initial increase in the perturbation amplitude with time.

Returning to the nonlinear problem, let us replace the

variables

2, (A), AA() 9  s.
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Let us also introduce the "current function" by the

relationships

z -r

where u, v,- w -- are the components of the perturbed velocity.

We shall try to determine the current function and the devia-

tion 0' of the potential temperature from its initial unperturbed

value in the form of the sum of the basic wave and its harmonics

(the tilde designates the complex conjugate)

V-~)(A, - i*tV)(A, j) e ]r ( 3)

The terms with k=O describe the nonperiodic "average"

motion (basic flow and "secondary flow"); k=1- harmonics of

the "primary wave". Terms with k>l are the result of the inter-

action of the lowest terms of the series. Following [9], we shall

also assume that

and it is assumed that the "amplitude parameter" A is finite,

but sufficiently small so that the series (4),may converge, in

which it is necessary that nk . This condition actually means

that the kth harmonics, which arises during the nonlinear inter-

action, will be of the kth order of smallness with respect to

A [in the expansion (4) only terms beginning with A are present].

This is a key condition and will make it possible to "split"

the system of equations. The real function of time A(t) again

describes the amplitude change with time.

Another basic assumption is as follows:[9]

A-' dA = a(o)+a,) A+a(t)A 2+ ... =at)An,
dt (5)

+ - t dA =b(o)+b)A+b"()AZ+ ... =b"'A".
, +- .. ..(- -

dA dt3

3



Hra(n ) b ( n )

Here a (, b are unknown constants. In the assumptions

(3) - (5), the initial nonlinear system is reduced to two groups

(which are infinite with respect to the indices n and k) of ordi-

nary differential equations with respect to 9 "_ OR"I, which may

be solved sequentially beginning with n = k = 1. Turning to the

higher terms n, k, it is first necessary to determine a(n) and b(n)

in (5). Assuming k = n = 1, we obtain an approximation of the

order O(A), which completely coincides with the linear stability

problems. Thus a(o), b(o) are determined as eigenvalues of this
_ o= 7o -M6id- x,,(o)l where '.+etcr is the phase

linear problem: a -xc - , where k is the phase

velocity of the primary wave W- -'+ O. The coefficients \a, bO'

with even indices equal zero [8,9]; with odd indices they are

determined as follows. / 335

The differential equations with respect to have the

form
1_ (6)

where the unknown coefficients i, b"', play the role of the

parameter X. The operator L is linear, and f and g are 7known

functions which include the lower terms of the expansion (4).

The boundary conditions for. (6) are homogeneous. Let us use i

to designate the solution of the problem which is conjugate to

the homogeneous problem (6). The solution 'i will only exist

if the homogeneous problem (6) has eigen solutions (for certain

so-called eigenvalues X. Multiplying both parts of (6) by ,%

and integrating with respect to z within the limits of the layer

(Zl, z2 ) being studied, we obtain the following relationship

for determining A.

X= JgXdz /JIdz. (7)
5 5
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The parameter X may assume as many values as there are
solutions of the problem of\ eigenvalues for L4(1h1-1J . in the
case of the previous homogeneous boundary conditions.

We have investigated terms in the expansions of (3) - (5)
up to the second harmonic and third order inclusively, i.e., values
of J and the functions *0,2,0 * '] (which describe secondary
flow), _',,j (harmonics of a "primary" basic wave provided
by linear analysis), _, (distortion of the basic wave due
to nonlinear effects), ,(S.), 0 s.1" (second harmonics which is double
the frequency), with respect to the stabilities PO),b> ob') and O0,o.1
found from the solution of the linear problem. For example,

let us write the equations by means of which ,_ and 2,a2)j were
found, D 2[

U-c (a-c), LT
(8)

Here ()==~(s)cosq; ==arctg/'; iI()is the velocity of the unperturbed
flow, whose profile was selected as jet-like in the calculations,
i=j-Y ; -g( )] dimensionless frequency of Brent-
Weissel (the Ri number which is characteristic for the entire
flow is of importance); H,L - vertical and horizontal scales
of the perturbations, respectively: Jff_+~.-0. -O0]m/sec.

These characteristic values may be used for changing to the
dimensional values =-dT/d, yi - dry adiabatic gradient; D=d/dz.

For I'") , we have

K-- N* -+IP

• " -3 (a N- D'aD ."

SI- -+ , +D' . ( 9 )
2x(a-c)' (z-c)a u-c

Here J' D ; equations (8), (9), which are more

cumbersome and therefore the remaining equations are not derived
here, may be numerically integrated on the Minsk-22 and Minsk-32

computers.
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-. The dependence of the parameter A on time, with allowance for

the terms of second order in (5), may be described by the following

equation 4

A. De--aI ' (10)

where D is a constant which we may determine assuming 
that /336

at the moment t=t the perturbation amplitude is known

A (to) =Ao, D=a(°)A-2 +a. (11)

The wave frequency also depends on the amplitude (and on

time)
at0 b + 1 b(2 ) A
a((t) -b ° - a") - I- (12)

This latter dependence is weakly expressed since in (A/A o )

an almost linear function of time. The frequency changes become

significant only when there is a rapid growth in the amplitude

of the unstable wave.

As may be seen from (10), at al.O>i the perturbation increase

rate is greater than that provided by linear theory: there 
is

a regime of "rigid perturbation" [10] or a "supercritical

instability". The presence of a discontinuity A(t) when the

denominator in (10) vanishes has an influence upon the limited

nature of the investigation, which makes it impossible to

describe the increase in the wave for all t. Certain physical

concepts regarding the length of the time interval in which

the model formulated is valid will be given below. If 

then A(t) strives to a finite limit which equals A*-( a(0/1jS) °

This is a case when the instability leads to the 
occurrence

of periodic motion:"a regime of soft excitation" 
[10].

- re- , . w h11a p j oTh P' -< '.- ....~a.i" , " " "h- .w . , " • .h . . . .. ...' :,,-,. -'< ,,,;,' ' . . .. 1: ' ]':.. . . -t 
'

a-The -cacuitns ot &s tam witha profile, of -unper-•

turbed velocity--U-x ~ z >Oand a linear temperature profile Tj
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Figure 1. Amplitude of the perturbation A(t) for cases of
periodic motion or a "soft excitation regime (curves (1-4) and a
rapid amplitude increase, or "rigid excitation" regime (curves
5-8) at infinitely small A0 (curves 1 and 5), at A0 =3*10-

3

(curves 2 and 6), at A 0=7.10
- 3 (curves 3 and 7) and at A 0=10

- 2

(curves 4 and 8).

the waves (which are unstable according to linear theory and

were described in [6]) in the case of finite amplitudes may lead

to the formation of supercritical regimes both of soft and rigid

excitation. (The dependence of the supercritical regime on Ri

and the wave number for the entire instability region must still

be determined; our results only refer to several points in this

region). The rate at which A(t) changes depends on the initial

amplitude A0 . Figure 1 shows graphs of A(t) for two waves which

are unstable in the linear approximation, but for one of which

the rigid excitation (M ,8-O-1sec )is found, and for the other-
-2

the soft excitation. (periodic regime) and (Nj=,2i0 Isec ). In

both cases, the absolute value of a(2) is very large (on the-

order of 10 3). The limit to which the wave amplitude strives in

the case of periodic motion is a value on the order of10-2 - 10 - 3
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in all the cases examined. Thus A(t) approaches A* from above

if A,>A °] (curves 3 and 4 in Figure 1 to which A-5,3-10-. corres- /337

ponds),and from below if A,<A" (curve 2). Waves, whose amplitude

increases are of the greatest interest in terms of the physics of

the process. Let us examine in more detail the example of rigid

excitation shown in Figure 1.

Let us give the parameters (dimensionless) of the primary

wave: m=5, P-i a(O)=\O0,04 at X-i1,8-10- j sec - 2 , where (-)is the

Brent-Weissel frequency. We shall use 3 o-3. as A The periodic

portion of the perturbed motion, within an accuracy of terms on

the order A3 , i.e., the function

*. =A*(.n)e,+A.V'2 >e"2iA3 ('.3)e'

will be calculated as a function of the variables t,r-r(xy,t),.

Figure 2 gives a graph of its dependence on time when x=y=0.

The overall increase in the amplitude without distortion of the

wave form may be seen: the unimportant role of the secondary

harmonics is characteristic in general for waves in a layer with

a constant temperature gradient. At the time t=7 (which corresponds

to 1 1/2 - 2 hours from the time that the perturbation increase

begins in the case of a characteristic time on the order of 15

minutes) the maximum fluctuations of the horizontal u' and verti-

cal w' components reach values on the order of 0.10 and 0.04

of the characteristic wind velocity U in an unperturbed flow.

The stage of the wave crest reversal occurs along with the forma-

tion of vortices. An analysis of the field of the perturbed

potential temperature provides a concept of the onset of the stage.

In our problem, the temperature is a value which can be conserved,

so that the isolines O=const in the r, z plane may be regarded

as a cross section by this plane of physical surfaces. The

occurrence of closed isolines e in the r,zlpiane, and a z-one of

convective instability along with them, indicates the beginning

of the collapse of the wave (Figure 3). Intense mixing must begin

8
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Figure 2. i(z,t).isolines for the case of rigid excitation.

in these zones; smaller scale motions will develop, to which a

portion of the primary wave energy will be changed. Motions

within the 00 Oz<O, zone, having much smaller (at least in order

of magnitude) scales cannot be described within the framework of

this model. The time interval for the applicability of the

latter must probably be limited by the moment at which negative

values of jO/zJ occur in the flow, i.e., the moment at which the

wave collapse begins.

The greater is the initial amplitude of A0 the more rapidly

does the collapse begin. Thus, at 0 ~ o0-2)the closed isolines 0

occur at the time t=0.8, i.e., 10-15 minutes after the beginning

of the wave increase. The altitude distribution of the amplitudes

and their value at the time of the reversal do not depend on

A0 '

The increasing wave derives energy from the basic flow and

transfers the momentum, deforming the velocity profile. We may /338

determine the exchange of energy between the main flow and the

perturbations by examining the balance of nonperiodic flow energy.

We may obtain an equation for the energy balance in the. perturbe

flow by the regular Imethods from the equations of motion

EE E ap' " -a '

S+- - --- " +~-9-T
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Figure 3. Isolines of perturbed temperature in the (r,z) plane
for the case of rigid excitation; values above 0 for z = -1 are
given in degrees.

Here E='/ 2(q+ is the kinetic energy of the perturbed flow;]',Here ... . . ..... -

deviations of pressure and temperature from their values at the

initial moment. Substituting E in the form of a series with

respect to the harmonic components (3), for E() - the energy of

nonperiodic motion (i.e., the "average flow") -- we obtain the

equation for the energy balance per unit of mass.

OE(O 0+
+ 6E,(*)+6E.(*) -8E:°+

a t . . . . . ( 1 3 )

where the energy transfer in the direction of the r axis and along.

the vertical is

BE0° = im (DE -) _ D F ) , i.m<o,\

and

force of pressure gradient per unit time

(0) &1m
#1 =, [Dip(m)p(m)-D4 (m)p(m)], < 0

buoyancy force per unit time

0 10mg
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Equation (13), which is integrated over altitude, represents

the exchange of energy between perturbations and the "average

flow" for a column of air with a unit base and a height equalling

the thickness of the jet stream layer. We calculated the terms

of the -energy balance equation- (13) on the order of A 2 and

their integrals with respect to altitude. If the wave is

neutrally stable (a( 0 ) = 0), then there is no exchange of energy

between it and the basic flow. If a('.0)7 , then the energy of the /339

unperturbed motion may be transferred directly to the perturba-

tions. In addition, there is a secondary flow, whose velocity

is proportional to i' .

When the wave is close to reversal, the velocity of the

secondary flow reaches 1 - 2% of the unperturbed flow velocity.

The upper half of the flow close to the axis is somewhat

accelerated, while the lower half is slowed down. The velocity

redistribution in the main flow takes plaice as a result of

vertical transport. The periodically distributed vertical

velocities lead to organized outflow of the kinetic energy from

the lower half of the jet stream to the upper half.

The order of the terms OE0"~ O, 6E, 8) and30 is the same in

Equation (13) and in essence they form the energy balance.

Within an accuracy of terms on the order of A2 , there is no

horizontal energy transport; the primary wave does not transfer

energy in the horizontal direction. The buoyancy force makes

a very small contribution to the energy balance, since the

stability of the stratification in the hydrodynamically unstable

layer is very small.

Assumin -4 - -Oo Ao=---O:

Assuming Ao3A0 or4.10. in the calculations, we find that

at the initial moment the perturbations of the horizontal velocity

component do not exceed 0.3 or 1% of the velocity of the basic

flow. Such weak perturbations are practically always present in

11



"quasi-laminar" flows in a free atmosphere. It may therefore be

assumed that hydrodynamically unstable layers become turbulent

immediately after it occurs and that the meso-scale motions

in such layers are practically always turbulent. A clearly

expressed turbulent zone may appear in the region y4< h , which

arises under the influence of processes of a synoptic scale

or any local processes - for example, the propagation of a long,

internal wave with significant amplitude. Such a wave, deforming

the profiles of temperature and wind in a hydrodynamically stable

flow, produces zones of supercritical Ri which move together with

the wave. A similar mechanism of "secondary instability", pro-

posed by Phillips [11] may take place at comparatively small sub-

critical Ri.

Gravitational shear waves of finite amplitude, even though

they may be neutrally stable, may be the reason for the occurrencej

of zones of instability and turbulent spots in the flow. A study

of the nonlinear behavior of such waves (for which a(0)=7-

was performed within the framework of the model presented for

different forms of the temperature profile in a jet stream.

s1cept for the case --f /dvcosi the distribution of TI(z) , re-

producing the temperature profiles in a layer of the tropopause

of different types was examined: isothermal or polar type,

Ui9 -:61s) ; inversion or tropical type 4Z =-O_7thfO' ;

inversion-isothermal type (z) O,035.(1-t iOz)- --0 _ 05 ;,

weak. inversion type .(z)0-3l The basic result of

the calculations is as follows: neutral waves in a polytropic

layer are practically linear even at very large amplitudes,

whereas waves in a layer of the tropopause are nonlinear even

for very small amplitudes. The behavior of the waves is determined

always by the temperature profile; the wind distribution plays

a secondary role.

12



Let us discuss in greater detail other important results

for neutral gravitational shear waves of finite amplitude.

Waves which are neutrally stable according to linear theory

remain neutrally stable always (a(2-0) . A change in the phase />340

velocity described by the coefficient b(2) in a polytropic jet

is always small, although it increases in terms of modulus with

a decrease in stability. If the temperature profile has signifi-

cant curvature (tropopause), the values of b (2 ) increase greatly,

particularly in the first mode. The amplitude functions 'Y"_] 'are\

increased - the additions to the amplitude function of the

primary wave caused by a change in the wave phase velocity and

the interaction of the first and second harmonics. The second

harmonics ] also has a little greater influence in the case of

a nonlinear profile ( , as a result of which the wave form is

distorted. The great influence of the temperature profile

curvature is caused primarily by characteristics of the amplitude

function "jj" of the primary wave, whose form always greatly de-

pends on the profile T(z) . The study [12] provides a detailed

description of results of a numerical solution of the linear

problem regarding internal waves, including a tropopause of

different types. The presence of the tropopause has a slight

influence on the wave phase velocities, but has a great influence

upon the amplitude functions, so that the maximum of the wave

activity is displaced toward the upper, more stable portion of

the layer. In the lower portion of the layer (under the tropo-

pause) the waves are suppressed more strongly,the smaller is

the static stability. Thus, the amplitude of the primary wave

is distributed nonuniformally in terms of altitude, particularly

close to the tropopause level. As a result, there is an

increase in the contribution of nonlinear terms which describe

the vertical and horizontal transport of the perturbed values-.
If the stability is reduced in the lower portion of the layer

13



(under the tropopause), then even only moderately strong

perturbations, which are nonuniformally distributed in terms of

altitude, readily lead to the formation of instability regions

(convective or hydrodynamic), that is, to the collapse of the

wave -crest under- the--- tropopa-use level ...

As an example, let us examine eigenoscillations of finite

amplitude in a jet stream, whose axis coincides with the tropo-

pause of the inversion type with a very thin (about 200 m)

transition layer from the tropospheric gradient (0.70/100 m) to

the stratospheric gradient (-0.70/100 m): p=--0,007thQAwheOhe-- ,\

deg/m.

If the perturbation amplitude is small i(A-qi:0) , then the

waves of any length which move along the flow in the range from

0.5 - 1 km to 20-40 km differ little from those described by

linear theory. When the parameter A equals 0.05 - 0.1, then at

first (for small A) the longest waves (20-30 km) and the shortest

waves (1-2 kin) and then the waves with a length of 5-10 km, begin

to be deformed. As a result of the application of an increasing

second harmonic, the wave crest becomes narrower, and the trough

becomes more planar. The periodic portion of the current function

q(r,z) for this case equals the sum of the harmonic terms of the

series (3) up to third order with respect to A inclusively, and is

given in Figures 4 and 5 for two values of the parameter A. It

may be seen that, with an increase in A, the form of the "stream

cells" changes in the plane r,z. The closed stream lines in this

plane are characteristic for traveling waves and do not coincide

with the particle trajectories, reflecting only the instantaneous

velocity distribution of the periodic portion of the perturbations.

Their nonperiodic portion is secondary flow caused by the wave

motion and directed along the main flow in the vicinity of the

jet stream axis and against the flowpjon the periphery.

14



Figure 4. Current lines (thin lines) of wave motion in the
(R,) plane and the graph w(r) at z = 0 and z = -0.6 (heavy lines).
for--the case y=-0.007 th 10z at A0=0.01 (case of a neutrally
stable wave).

I

Figure 5. Current lines of wave motion and the graph w(r) at
A0 =0.1 (case of neutrally stable waves).\

15



In order to develop a concept regarding the form of the

traveling waves, just as in the case of unstable waves, let us

examine the isolines of a differing potential temperature in the

r,z plane, (Figure 6). The closed isotherms (and the zones of

convective-instability) under the- tropopause -are clearly expressed

for A=0.15. In the more stable portion of the layer - above the

tropopause - wave-like oscillations of surfaces of differing

potential temperature continue to exist. Thus, the neutral

wave in the tropopause layer has a strong tendency to form

"vortices" and a tendency toward reversal in the inversion por- / 341

tion of the layer. Strong mixing must develop in the reversal

zones in accordance with the mechanism of "secondary instability"

(convective or hydrodynamic). For the implementation of this

mechanism, the wave amplitude must reach a definite "critical"

value, in our case close to A=0.12 ("the critical amplitude"

is determined from the value A=Ai, at which those points appear

in the flow where O0/Oz=O) ). The concept of the "critical

amplitude" was introduced by Phillips [13] in the problem of the

energy spectrum of internal waves. (It was assumed that all of

the waves reach critical amplitudes if turbulent spots are dis-

seminated in the flow).JThis concept was developed further in [14].

The values of the "critical amplitudes", obtained in our

calculations for jet streams in the tropopause (0.10 - 0.15),

do not contradict the empirical data. The perturbations of the

horizontal velocity component, which equal 10-15% of the main

flow velocity, are frequently on the order of 10 km in atmospheric

jet streams under conditions of stable stratification [15].

The values of the critical amplitudes determined, as has already

been emphasized, by the form of the temperature profile, depend

(to a lesser extent) also on the wind profile: according to the

calculations, the contribution of nonlinearity is much greater

(which means that the critical amplitude is smaller) in

more intense and narrow jet streams. In addition, for given

16



Figure 6. Isolines of potential temperature in the .(r,z) plane
(values of the temperature above its value on the lower layer
boundary are given) for a jet stream with the axis on the
tropopause level' ( --oo7th, cc,c+)J at A0 =0.15 (case ofnheutraliy
stable wave).

wind and temperature profiles, the critical amplitude depends

on the wavelength, which is greatest for a wavelength of

5-10 km and decreases both\ for longer waves and shorter waves.

The occurrence of turbulent spots, which are disseminated in a

staoly stratified flow, on the crests of internal waves as the

result of'1becondary instability" is thus most probableoin the / 342

inversion layers and in general in layers having a temperature

gradient which changes with altitude, and also in layers with

large vertical shifts of the wind. Such zones must have compara-

tively small dimensions (several kilometers along the.

horizontal); these dimensions are smaller, the greater is the

stability of stratification in the layer. The formation of dis-

continuous turbulent zones is very probable (on the crests.of

several of the largest waves in the group). The occurrence of

turbulent zones of large dimensions (several tens and hundreds

of kilometers) may be naturally related to the "primary" insta-

bility of the main flow.

The authors would like to thank L. A. Dikom who offered

important comments during the discussion of the manuscript, and

also N. Z. Pinus for assistance with the work.
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